Bing Hodneland logo



List Bestselling Books


List Bestselling DVDs


Sheet Music Plus Featured Sale
In Association with

All the information on this site is free. But if it is of value to you, I appreciate a tip.

Previous page:

Scale Harmonization and Chord Construction

Next page:
Previous page: Lesson 3: BLUE NOTES AND PASSING TONES, BENDING Next page: The Pentatonic Scale

Lessons of The Week was a series of guitar lessons circulated in "News", in the pre-web days of the Internet. 29 lessons were written before it died out, and I happende to write the first three. They represent a little bit of internet history, as they may have been the first guitar lessons written for the internet.

The lessons were all written in txt format - they were written around the same time as Tim Berners Lee were sitting in Switzerland specifing the first version of html. I have converted them to html, and may have added a few links from the lessons.

Lesson: 4
Title: Scale Harmonization and Chord Construction
Level: Intermediate
Style: Application of music theory
Instructor: Dave Good

In this lesson, I want to look at building chords through scale harmonizing. I am asked over and over questions like "How do you make this chord?" and "What chord is this?" Well, I would like to present the idea of chord construction, first from a theoretical point of view, and then how to relate this to the guitar. If you already know basic music theory, you can skip this first section, if not, please read and understand the following before jumping into part 2.

Part One.

First of all, I would like to define and clarify a few terms that we will use:


The distance between two notes. The following is a chart of intervals, followed by their distances in half-steps and an example.

Name             Distance         Example
Unison           0 half steps     C to C
Minor Second     1 half step      C to Db
Major Second     2 half steps     C to D
Minor Third      3 half steps     C to Eb
Major Third      4 half steps     C to E
Perfect Fourth   5 half steps     C to F
Augmented Fourth/
Diminished Fifth 6 half steps     C to F#
Perfect Fifth    7 half steps     C to G
Augmented Fifth/
Minor Sixth      8 half steps     C to G#
Major Sixth/
Diminished Seventh 9 half steps   C to A
Minor Seventh    10 half steps    C to Bb
Major Seventh    11 half steps    C to B
Octave           12 half steps    C to C


A specific set of intervals contained within one octave. In this lesson we will deal only with the Major scale, but will utilize the Minor and others soon. The interval formula for the major scale is as such (in C Major):

root   major    major  perfect  perfect  major    major
       second   third  fourth   fifth    sixth    seventh   octave
^        ^       ^        ^        ^        ^        ^        ^
C        D       E        F        G        A        B        C

I        ii      iii      IV       V        vi       vii*     I

The Roman numerals underneath the note name indicate the type of chord that is formed when the scale is harmonized, which is what we will look at in this lesson.

Capital letter (I) indicates a major chord
Lower case letter (i) indicates a minor chord
An asterisk (*) next to it indicates a diminished chord
A plus sign (+) indicates an augmented chord; there is no augmented chord 
in the example above since the augmented chord does not occur naturally in 
the major scale. example: III+

That about does it as far as basic information you will need for this lesson. The best thing to do would be to commit the previous information to memory, and that will make putting it into practice much easier.

Part Two.

On to the fun stuff. First off, pick a key. Any key. For the sake of clarity and simplicity, we'll pick C Major. Once you have these ideas down, you can go back and apply them to any scale, including minor, synthetic, and any others you wish to mention. Now, spell out the scale and number it as above, so that you have:

C       D       E       F       G       A       B       C
I       ii      iii     IV      V       vi      vii*    octave

Now, harmonize the scale in thirds, i.e. take a note, and put the second note from it on top, such as C-E. This is called harmonizing in DIATONIC thirds, where the third is either major or minor, depending on which note is contained within the key signature.

So, once you have done this, you should have the following pairs:

C-E     Maj
F-A     Maj
G-B     Maj

(There is no need to repeat the octave here)

Notice that pairs 1, 4 and 5 are major thirds, and that pairs 2,3,6 and 7 are minor thirds. This is the pattern you will ALWAYS get when harmonizing a major scale.

Now go back and add a fifth above the root of each third, i.e. take the fourth note over from the root, such as C-G. You should end up with the following:

C-E-G   Maj
F-A-C   Maj
G-B-D   Maj

Now, look at the resulting triads. You will notice that the 1st, 4th and 5th triads are major chords, the 2nd, 3rd, and 6th triads are minor chords, and the 7th triad is a diminished chord. This is the pattern for all major keys.

So, looking at the results we get the following formulas:

Major chord:      Root note, Major third, Perfect fifth (from root)
Minor chord:      Root note, Minor third, Perfect fifth
Diminished chord: Root note, Minor third, Diminished fifth

Now that you know the theory involved, memorize all the above, and apply it to all 12 keys. You will end up with double sharps and double flats in some of the keys, so don't be alarmed when it happens-just check and make sure that you have the correct intervals from the root note. That Was Interesting, But How Do I Apply It To The Guitar??

Simple! First thing you do is get a fret board chart, such as the one at the end of this lesson. Then, build your triads as above. Next, pick a position on the neck and build the chord in that position, e.g.:

In Eighth Position
C Major chord : C E G
     8      9        10     11

Chord Notes:
     G       E

This is called a Chord Inversion, where the root note of the chord is not the lowest sounding note. In this case, it is a first inversion chord, because the third of the chord (E) is on the bottom. If the fifth of the chord (G) were on the bottom, it would be referred to as a second inversion chord.

Well, that's about all for this lesson. Next time we will examine more chords obtained by adding to the basic triads, and will begin harmonizing the minor scale. If you have any questions, feel free to write me at either E-Mail address below, and I will happily answer anything you have to ask.

			Dave Good

Fingerboard by Frank Palcat, taken from Usenet:

Musical note equivalencies:
 A# = Bb     B# = C
 C# = Db     Cb = B
 D# = Eb     E# = F
 F# = Gb     Fb = E
 G# = Ab
  0    1    2    3    4    5    6    7    8    9   10   11   12
E||-F--|-F#-|-G--|-G#-|-A--|-A#-|-B--|-C--|-C#-|-D--|-D#-|-E--| thin
B||-C--|-C#-|-D--|-D#-|-E--|-F--|-F#-|-G--|-G#-|-A--|-A#-|-B--|  ||
G||-G#-|-A--|-A#-|-B--|-C--|-C#-|-D--|-D#-|-E--|-F--|-F#-|-G--|  ||
D||-D#-|-E--|-F--|-F#-|-G--|-G#-|-A--|-A#-|-B--|-C--|-C#-|-D--|  ||
A||-A#-|-B--|-C--|-C#-|-D--|-D#-|-E--|-F--|-F#-|-G--|-G#-|-A--|  \/
E||-F--|-F#-|-G--|-G#-|-A--|-A#-|-B--|-C--|-C#-|-D--|-D#-|-E--| thick

 12   13   14   15   16   17   18   19   20   21   22   23   24
E |-F--|-F#-|-G--|-G#-|-A--|-A#-|-B--|-C--|-C#-|-D--|-D#-|-E--|
B |-C--|-C#-|-D--|-D#-|-E--|-F--|-F#-|-G--|-G#-|-A--|-A#-|-B--|
G |-G#-|-A--|-A#-|-B--|-C--|-C#-|-D--|-D#-|-E--|-F--|-F#-|-G--|
D |-D#-|-E--|-F--|-F#-|-G--|-G#-|-A--|-A#-|-B--|-C--|-C#-|-D--|
A |-A#-|-B--|-C--|-C#-|-D--|-D#-|-E--|-F--|-F#-|-G--|-G#-|-A--|
E |-F--|-F#-|-G--|-G#-|-A--|-A#-|-B--|-C--|-C#-|-D--|-D#-|-E--|
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= | Frank Palcat \ e-----0-------- | | Ottawa, Ontario, Canada / B--3-----3----- Oh,____ life___ | | E-mail: \ G-----------2-- | =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=

Previous page: Previous page: Lesson 3: BLUE NOTES AND PASSING TONES, BENDINGNext page: The Pentatonic Scale Next page:

Previous page: Next page:
Previous page: Lesson 3: BLUE NOTES AND PASSING TONES, BENDING Next page: The Pentatonic Scale